
Radar Imaging 
 
1. Inverse Problem 
 

A general system function can be represented by both in time and frequency domain. Their relation is defined by 

Fourier transformation. 

 

When parameters of a system are time invariable, the input x t( ) and the output y t( )  of the system is related by an 

impulse response of the system function h t( )  by: 

y t x h t d x t h t( ) ( ) ( ) ( ) ( )= − = ⊗
−∞

∞z τ τ τ  (1.1) 

The operator ⊗ , which is defined in the time domain, is convolution. The spectrum of x t( ) , y t( )  and h t( ) are 

given as X Y( ), ( )ω ω and H( )ω , and they are related in the frequency domain by: 

 

Y H X( ) ( ) ( )ω ω ω= ⋅    (1.2) 

 

 where H( )ω  is the system function, or the transfer function of a system..  

 

Now we think about a simple inverse problem. We assume that we know the system function, and output was measured. 

The inverse problem is estimation of the input ( )x t  by using the known parameters ( )h t  and ( )y t . This kind of 

problem is normally called “deconvolution”, because it is the reverse operation of convolution. This kind of problem 

can be found in signal forming in radar. The received radar signal is suffered from system function such as phase delay 

of antennas, therefore the received signal have to be processed to recover the original signal. 

 

1) Inverse filter 

Theoretically, this problem can be solved exactly by the inverse filter. By using (1.2) we can obtain the Fourier 

spectrum of the input as: 
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Thus, by taking the inverse Fourier transformation of (1.3) we have 

 

 1 ( )( )
( )

Yx t F
H
ω
ω

−  
=  

 
   (1.4) 

 

However, the inverse filter is very strongly affected by noise. 

 

Assume that the output signal contains noise ( )n t , which is incoherent with the input signal ( )x t . 

 

 ( ) ( ) ( )y t x t n t= +     (1.5) 



By substituting (1.5) into (1.4) we have: 
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where →  indicates the estimator. The fist term is the original estimator of the input, but the second term is generated 

from the noise. When the signal to noise ratio (SNR) is great enough at all the frequency range, there is no problem, but 

when SNR is poor at some frequency range, the second term becomes large. For instance, if the ( )H ω is a band-pass 

filter, at the frequency range of the rejected frequency range, SNR is very low, because ( )X ω is small. In this 

frequency range, ( ) 0H ω ≅  due to the band-pass characteristics. Therefore the denominator of the second term in 

(1.6) is zero and the second term diverges. 

 

This problem can be solved by using an additional band-pass filter ( )G ω . If we set ( )G ω  as a band-pass filter 

having the frequency range inside the spectrum of the input ( )X ω , 
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We have to notice that the estimated signal is very strong affected by the impulse response of the additional band-pass 

filter ( )g t . The convolution of ( )x t  and ( )g t  normally cause artifact and broaden the signal. In order to reduce 

the artifact, ( )g t  is normally a smooth function such as a Gussian pulse, so that the frequency range is relatively 

narrow and does not cause oscillation in the time domain. 

 

2) Matched Filter 

 

More common technique to solve the problem of the noise is the matched filter. The matched filter is defined as: 

 

( ) ( ) ( )tx t y h dτ ττ
∞

−∞

→ −∫    (1.8) 

 

Mathematically, this is a cross-correlation of ( )y t  and ( )h t . The evaluation of (1.8) can be given by Fourier 

transformation as: 

 

 1 *( ) ( ) ( )x t F Y Hω ω−  → ⋅    (1.9) 

 

where * denotes the complex conjugate of the function ( )H ω . The matched filter is known as a stable estimate even 

the signal has low SNR. However, when SNR is good enough, the matched filter gives the result having lower 

resolution compared to the result obtained by the inverse filter. 

  



 

3) Minimum distance 

 

The same problem can be estimated by a different approach. If we assume a model of the ( )x t  as ( )mx t , then the 

output corresponding to the model can be calculated as: 

 

 ( ) ( ) ( )m my t h t x t= ⊗   (1.10) 

Then the difference of the output of the model and the measured output can be formulated as: 

 

 
2( ( )) ( ) ( )m mx t x t x t dtε

∞

−∞

= −∫  (1.11) 

If this residual is minimized, we can conclude that the model ( )mx t  is the good estimate of the real input ( )x t . In 

order to minimize the residual, we have to change the model ( )mx t  and evaluate the residual to find the minimum. 

  

2. Range Imaging 
 

Radar is a technique to estimate the location and the shape of the radar target by electromagnetic wave. This situation 

can be modeled by the system function as ( )h t  as transmitting signal, ( )y t  as received radar signal and ( )x t  as 

an impulse response of a radar system under measurement. This system can be modeled as: 

 

( ) ( )i ix t r t tδ= −   (2.1) 

 

where ir  is the reflectivity of the radar target and 2 /i it d v=  is the two-way travel time from the target. Our task is 

estimation of ir  and it  from the measured ( )y t , when the input signal ( )h t  is not an ideal impulse, so the 

measured ( )y t  is a train of a finite duration pulse. 

 

Inverse filtering or the matched filtering can be used to recover the impulse train of ( )x t , and is the estimate of the 

radar target parameters. In this case, the transmitting signal waveform ( )h t  must be known. This signal is normally 

called the “reference signal”, and it must be also determined from the measurement. For example, the reference signal 

can be obtained by averaging many received signals. 

 

3. 2-D Inverse problem 
 

Now we extend the inverse problem into 2-D case. Although the 2-D inverse filtering can also be used, matched filter is 

more common, due to its stability. 2-D matched filter can be defined by: Now the input function is determined by 

( , )u x y and the system function as ( , )h x y and the output as ( , )f x y . The relation between these function is 

written by: 

 

The correlation function is defined by 

 



( , ) ( ', ') ( ', ') ' ' ( , ) ( , )x yf x y u x x y y h x y dx dy u x y h x y= − − ⋅ = ⊗ ⊗∫∫   (3.1) 

 

The matched filter to estimate ( , )u x y  from the measured ( , )f x y  and the known system function ( , )h x y can be 

given by: 
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This is the 2-D correlation between ( , )h x y  and ( , )f x y . 

 

4. Radar Imaging 
4.1 Scattering Model from Radar Targets 

 

Fig.4.1 1-D scanning case for 2-D imaging radar 

 

At first, we think a case of one-dimensional scanning along am axis x . The measured radar signal is ( , , )d x y t and the 

focused (processed) signal is ( , )u x y , where y is a range axis, which is perpendicular to the x axis. A point 

scatter ( ', ')x yσ is located. The scatter can be modeled as: 

 

0 0( ', ') ( ' , ' )i i ix y x x y yσ σ δ= − −∑  

where 0 0( , )i ix y is the location of the i-th point target.  Note that range axis y is normally denoted by r in SAR 

textbooks as shown in Fig.4.1. 

 

The response to the point scatter is: 
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where 2 2( , )R x y x y= +    (4.2) 

 

and ( )h t is the transmitted signal.  

 

4.2 Radar Imaging in Time-Domain 

 

The estimate of the radar reflectivity is given by correlation of the measured signal ( , )d x t and the response of a single 

point scatter ( )h t  and is given by: 

2 ( ' , ' )( , ) ( , ) ( ', ) ( ) 'R x x y yx y u x y d x t h t dx dt
c

σ − −
→ = ⋅ −∫∫  (4.3) 

where jd  indicates the measured data acquired at ' jx x= . This is the algorithm to obtain the radar image in the time 

domain. This is the output of the matched-filter. It should be noted that the integration of (4.3) does not have the form of 

convolution, shown in (3.1), therefore a technique of FFT cannot be used in this form. 

 

4.3 Diffraction Stacking 

If we assume the signal form ( )h t as an dirac-impulse ( )tδ , (4.3) can be simplified and we have the following 

formulation representing “Diffraction Stack” which is commonly used for seismic signal processing.  
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4.4 f-k migration 

By taking the Fourier transformation of (4.3) as for t  we have: 

 



0
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RU x y D x y H j dx
c

ω ω ω ω== ∫   (4.5) 

By using the relation 
2

2
2

4
y xk k

c
ω
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with 2 2exp( ) exp( )x yjk x y jk x jk y− + = − −     (4.7) 

we can take the Fourier transform as for x then we have: 

 

0
1( , , ) ( , , ) | ( ) exp( )

2x x y x yU k y D k y H jk x jk yω ω ω
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This equation is the same as (6.3.6) in “Fundamental of GPR signal interpretation”. 

( , ,0) ( ,0, ) y xjk y jk x
x xu x y U k e e dk dω ω+ += ∫∫  (6.3.6 in Fundamental of GPR signal processing)(4.9) 

This approach is normally called as f-k migration. This is a exactly the same process as the Time—Domain imaging, 

given in (4.3), however, we need interpolation to obtain the spectrum in yk -domain used in (4.7). The spectrum cannot 

directly be given by measurement, and this interpolation can cause numerical error, when the data acquisition density is 

not high enough. 

 

4.5 Radar Imaging by using FFT 

 

We rewrite (4.2) and (4.3) 
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2 2( , )R x y x y= +      (4.11) 

The numerical calculation of (4.10) is very time-consuming, and if we can use FFT algorithm, it would be very effective. 

In order to apply FFT to (4.10), we have to use a few approximations. 

 

At fist, we assume that the radar target is located at a constant position as for y , i.e., 0y y= . For most of SAR from 

satellites and airplanes, y is the height of the radar from the ground surface. The ground surface height variation is 

very small compared to the height of the radar, then the approximation of  

 0y y=        (4.12) 

can be satisfied for most of the targets. Then (4.10) can be rewritten as: 
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Then, this formulation can be modified by using convolution and we have: 
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By using 2-D Fourier transformation, we have: 

 

( , ) ( , ) ( , )x y x y x yU k k D k k H k k=     (4.15) 

 

This is the most commonly used algorithm in SAR imaging . 

 

4.6 3-D Radar Imaging 

The algorithms for 2-D model can be extended into 3-D imagine case as shown in Fig.4.2. 

 

 

 

Fig.4.2 3-D radar imaging model 

 

The task of radar imaging is to estimate the reflectivity of ( ')rσ  which is distributed at the spatial coordinate of 'r . 

An image function ( ')I r should be the estimation of ( ')rσ . 

 

The model of the received radar signal from the distributed scatters (radar target) can be given as: 
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r

V
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where ( )s t is a transmitted signal, tx rxR R+ is the one-way range from the transmitter, receiver to the target, and c is 

the velocity of light. Then the estimation of the target can be given by correlation as: 
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Appendix A 

(Proof of (1.9) 

 

We define Fourier transformations as: 
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